I modelli della ricerca operativa Problemi di scelta fra due o più alternative

I modelli della ricerca operativa.

Per chiarire cosa si intende per modello, possiamo dire che "un modello" è sempre una approssimazione della realtà e quindi va interpretato e verificato. La ricerca scientifica ha sviluppato diversi modelli entro i quali si può far rientrare la maggior parte dei problemi.

Tali modelli possono essere raggruppati in categorie a seconda delle caratteristiche che presentano. Si possono distinguere:

- **Esperimenti operativi**: si opera direttamente nell'ambiente in cui si prenderà la decisione; la modellizzazione consiste solamente nell'inventare un insieme di esperimenti da realizzare, analizzare, misurare, interpretare prima di assumere le decisioni definitive.
- Giochi: sono modelli in cui si costruisce una rappresentazione semplificata dell'ambiente e coloro che prendono decisioni devono interagire in modo organizzato e sequenziale, per accertare quale, tra le possibili strategie, risulta la migliore. Caratteristica fondamentale di questi modelli è che vengono mantenute le interazioni umane che agiscono nell'ambiente decisionale, come succede nella realtà. Essi sono spesso utilizzati come mezzo di apprendimento per sviluppare le capacità decisionali.
- **Simulazione**: sono riproposizioni di situazioni reali. Sono utili per verificare, tra le diverse alternative previste, quale può produrre i risultati migliori: la scelta è operata in seguito al confronto dei risultati ottenuti per le diverse situazioni possibili.
- Modelli analitici: più astratti. I problemi vengono rappresentati esclusivamente in termini matematici, le relazioni sono descritte per mezzo di una serie di vincoli matematici, l'obiettivo viene espresso mediante una funzione. Il modello elabora la soluzione ottimale per la funzione obiettivo.

In generale la modellizzazione è un processo vantaggioso in quanto permette di:

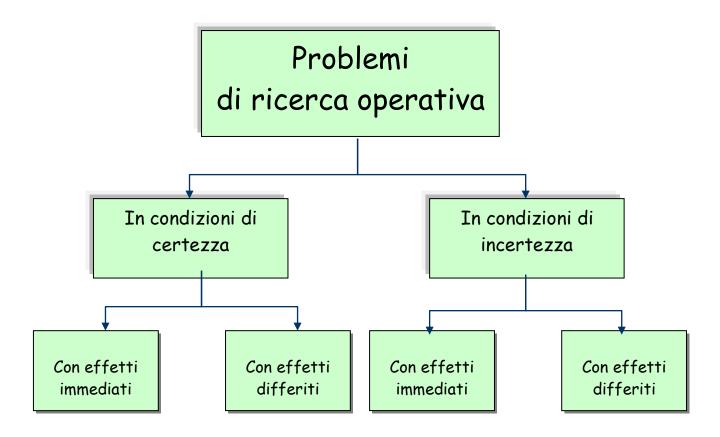
- descrivere il problema coincisivamente,
- facilitare la trattazione del problema,
- considerare tutte le relazioni fra le variabili emergenti,
- utilizzare i calcolatori elettronici per le elaborazioni dei dati.

Durante l'attività di modellizzazione dovrebbe essere sempre verificata l'aderenza del modello alla realtà, e, inoltre una volta completato, quest'ultimo deve essere verificato nel suo insieme. Se il modello si dimostra inadeguato, è necessario individuarne le carenze e correggerle.

Le carenze di un modello possono essere dovute a:

- esclusione di variabili significative;
- inclusione di variabili non significative;
- valutazione errata di variabili;
- errori di impostazione del modello.

Infine la soluzione trovata attraverso l'applicazione di un dato modello deve essere controllata mediante opportuni strumenti matematico-statistici per verificarne la stabilità.


Classificazione dei problemi di ricerca operativa

I problemi della ricerca operativa sono classificati secondo le seguenti categorie:

- I problemi deterministici, in cui si riscontrano condizioni di certezza. In questi problemi si suppone che tutti i valori delle variabili incontrollabili e dei parametri siano noti con certezza e fissi:
- problemi stocastici, che coinvolgono decisioni in condizioni di incertezza per cui le decisioni devono essere assunte su basi probabilistiche; in questi problemi intervengono le variabili aleatorie;
- <u>problemi di tipo misto</u>, in cui si riscontrano sia condizioni di certezza, sia condizioni di incertezza.

Rispetto alla ricaduta delle decisioni prese i problemi vengono distinti in:

- problemi con effetti immediati se la decisione assunta non ha ripercussioni nel futuro
- problemi con effetti differiti se la decisione assunta ha ripercussioni nel futuro

2. Alcuni problemi di ricerca operativa

Problemi di scelta nel discreto

Si tratta di problemi in condizioni di certezza e con effetti immediati. In generale consistono nel determinare il massimo o il minimo di una funzione economica nel caso in cui la variabile d'azione assuma un numero finito o un'infinità numerabile di valori.

Se la variabile è intera (per esempio numero di macchine, di pezzi, ecc.) e assume un numero finito e limitato di valori, per il calcolo del minimo e del massimo si costruisce una tabella dalla quale si deduce il valore ottimale.

Se invece i valori di riferimento sono molto numerosi, si procede come nel caso continuo rappresentando graficamente la funzione corrispondente e arrotondando le eventuali soluzioni non intere al naturale più prossimo, sempre che esso rientri nel dominio della funzione stessa. Il caso più comune è la produzione di lotti di merce.

In economia si usa un metodo, detto <u>criterio marginalistico</u>, basato sullo studio del segno degli incrementi, differenza fra i valori della funzione per due valori successivi della variabile:

$$\Delta f = f(x+1) - f(x)$$

Se gli incrementi sono positivi, la funzione è crescente, se gli incrementi sono negativi, la funzione è decrescente. Si ha un massimo se Δf da positivo diventa negativo(in quanto la funzione da crescente diventa decrescente), si ha un minimo se Δf da negativo diventa positivo.

Problemi di scelta nel continuo

Si tratta di problemi in condizioni di certezza e con effetti immediati. In generale consistono nel determinare il massimo o il minimo di una funzione economica nel caso in cui la variabile d'azione assuma tutti i valori reali in un intervallo di scelta [a, b]. Per la risoluzione di tali problemi si procede alla rappresentazione grafica della funzione economica e alla determinazione della soluzione ottima, sempre per via grafica.

Problemi di scelta a più alternative

In queste tipologie di problemi si mettono a confronto, per esempio, procedimenti differenti per fabbricare il medesimo prodotto, o di tariffe differenti per il trasporto di merci o noleggio di macchinari; si deve quindi scegliere quale alternativa è la migliore.

Nella maggior parte dei casi, entro certi limiti, sarà più opportuna un'alternativa, mentre un'altra alternativa potrà essere preferibile entro altri limiti.

La risoluzione di questi problemi avviene generalmente per via grafica rappresentando in un medesimo sistema di assi cartesiani ortogonali le funzioni economiche delle varie alternative, determinando gli eventuali punti di intersezione, o "punti di indifferenza", perché per quei valori di "x" i valori di "y" coincidono.

Si deduce quindi dal grafico in quali intervalli è preferibile l'una o l'altra alternativa.

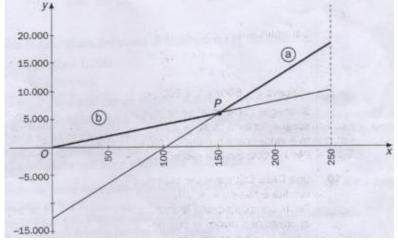
In questo caso il problema è diverso: si hanno due o più funzioni che rappresentano, ad esempio, procedimenti differenti per fabbricare lo stesso prodotto, oppure tariffe diverse x il trasporto della merce ,ecc..., e si deve scegliere quale alternativa è migliore. Naturalmente, se per ogni quantità c'è un alternativa migliore, si sceglierà quella, mentre si scarterà l'alternativa peggiore rispetto a tutte le altre. In generale, entro certi limiti converrà un'alternativa, mentre un'altra alternativa potrà essere preferibile entro altri limiti.

Il procedimento per ottenere la soluzione consiste nel rappresentare in uno stesso sistema di assi cartesiani ortogonali le funzioni economiche delle varie alternative e determinare gli eventuali punti di intersezione, detti <u>punti di indifferenza</u>, poiché per quei valori di x i valori di y sono eguali. Dal grafico si deduce in quali intervalli è preferibile l'una o l'altra alternativa.

ESEMPI:

1_Un assemblatore di televisori deve decidere il modo di vendere la sua produzione. Si presentano due alternative:

a)aprire due punti di vendita per i quali è prevista una spesa mensile di euro 12.400 ed è possibile vendere i televisori al prezzo di euro 120;


b)cedere la produzione a una catena di supermercati a un prezzo di euro 40 per ogni televisore. A parità di altre condizioni determinare la scelta più conveniente ,sapendo che la massima capacità produttiva è di 250 unità al mese.

Il problema di scelta è nel discreto, si esprimono le funzioni nel continuo si approssimano, se necessario, i valori ottenuti a numeri interi.

Detti x il numero di televisori venduti e y il ricavo, il modello matematico è espresso dalle due funzioni:

a)
$$\begin{cases} y = 120x - 12.400 \\ 0 \le x \le 250 \\ x \in \mathbb{N} \end{cases}$$
b)
$$\begin{cases} y = 40x \\ 0 \le x \le 250 \\ x \in \mathbb{N} \end{cases}$$

Rappresentiamo graficamente le due funzioni

Determiniamo l'intersezione fra le due rette.

La soluzione del sistema:

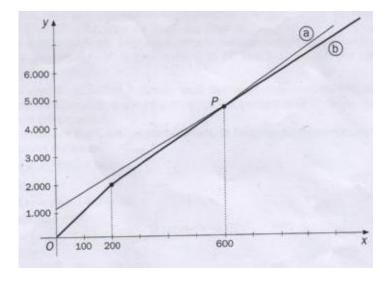
$$\begin{cases} y = 120x - 12.400 \\ y = 40x \end{cases}$$

è x=155, y=6.200, pertanto i grafici delle due funzioni si intersecano nel punto P (155, 6.200). Dalla rappresentazione grafica si ricava che conviene scegliere l'alternativa b) se si prevede di produrre e vendere un numero di televisori tale che $0 \le x \le 155$, conviene scegliere l'alternativa a) se si prevede di produrre e vendere un numero di televisori tale che $155 \le x \le 250$. (La scelta più conveniente è evidenziata nel grafico con la spezzata colorata).

Il punto P, intersezione fra due funzioni economiche, è detto punto di indifferenza, in quanto per x = 155 è indifferente l'alternativa a) o l'alternativa b).

- 2_Per il trasporto della marce un'azienda può scegliere fra le seguenti offerte:
 - a) Una ditta di trasporti chiede € 10 al quintale fino a 200 quintali o € 7 per i quintali eccedenti;
- b) Un corriere chiede € 6 al quintale e una spesa fissa mensile di € 1.200

 Determinare qual è la scelta più conveniente secondo i quintali da trasportare mensilmente.


 Indichiamo con x i quintali merce da trasportare e con y la spesa mensile.

 Osserviamo che nell'offerta a) la funzione è una funzione a tratti e per x > 200 la spesa sostenuta è di 10 x 200 per i primi 200 quintali e 7 x (x-200) per i quintali superiori a 200.

 Si ottengono così le due funzioni economiche:

$$y = \begin{cases} 10 x & \text{se } 0 \le x \le 200 \\ 10 \cdot 200 + 7(x - 200) & \text{se } x > 200 \end{cases}$$
ossia
$$y = \begin{cases} 10 x & \text{se } 0 \le x \le 200 \\ 7x + 600 & \text{se } x > 200 \end{cases}$$
b)
$$y = 6x + 1.200$$

Rappresentiamo graficamente le due funzioni:

Determinare le coordinate del punto di indifferenza P. Dal sistema :

$$y = 6x + 1.200$$
$$y = 7x + 600$$

Si ricava x=600, y = 4.800 perciò P(600, 4.800) è il punto di indifferenza.

Si sceglie l'offerta a) se la merce da trasportare non supera 600 quintali mensili,mentre si sceglie l'offerta b) se la merce da trasportare mensilmente è almeno di 600 quintali (la scelta è evidenziata nel grafico dalla spezzata colorata).

Per x=600 quintali mensili sono indifferenti le offerte a) e b).