SINTESI DELLE PRINCIPALI FORMULE DI MATEMATICA FINANZIARIA

• REGIME FINANZIARIO DELL'INTERESSE SEMPLICE O CAPITALIZZAZIONE SEMPLICE

I=Cit	Calcolo dell'interesse semplice prodotto da un capitale C investito al tasso i
	per un tempo t
M=C(1+it)	Calcolo del montante prodotto da un capitale C investito al tasso i per un
	tempo t
C - M	Calcolo del Valore attuale C di un capitale che al tempo t e al tasso i ha un
$C = \frac{M}{1+it}$	valore nominale M
I _ C _ Mit	Calcolo dello sconto semplice o razionale applicato ad un capitale M al tasso
$I = S_r = \frac{Mit}{1 + it}$	i per un tempo t

• REGIME FINANZIARIO DELL'INTERESSE COMPOSTO O CAPITALIZZAZIONE COMPOSTA

$M=C(1+i)^n$	Calcolo del montante prodotto da un capitale C al tasso i per n anni
$C = \frac{M}{(1+i)^n} = M(1+i)^{-n}$	Calcolo del Valore attuale C di un capitale che dopo n anni e al tasso i ha un valore nominale M
I=M-C	Calcolo dell'interesse/sconto composto
$n = \frac{\log M / C}{\log(1+i)}$	Calcolo del numero di anni che occorre investire un capitale C per avere alla fine il montante M al tasso di interesse i
$i_k = \sqrt[k]{1+i} - 1$	Conversione dal tasso annuo i al tasso frazionato i _k
$i = (1 + i_k)^k - 1$	Conversione dal tasso frazionato i _k al tasso annuo i
$j_k = k i_k$	Calcolo del tasso annuo nominale convertibile
$i_k = j_k/k$	Calcolo del tasso frazionato noto quello convertibile

• REGIME FINANZIARIO DELLO SCONTO COMMERCIALE

S _c =Mdt	Calcolo dello sconto commerciale applicato ad un capitale M al tasso d per
	un tempo t
C=M(1-dt)	Calcolo del Valore attuale C di un capitale che al tempo t e al tasso d ha un
	valore nominale M
$M = \frac{C}{1 - dt}$	Calcolo del valore nominale di un capitale C investito al tasso d per un tempo t

• RENDITE

$M = Rs_{n - i} = R \frac{(1+i)^n - 1}{i}$	Montante di una rendita posticipata di n rate di importo R all'atto del versamento dell'ultima rata
$R = \frac{M}{s_{n \to i}}$	Rata di una rendita posticipata di n rate quando se ne conosce il montante al momento del versamento dell'ultima rata
$V = Ra_{n-i} = R \frac{1 - (1+i)^{-n}}{i}$	Valore attuale di una rendita posticipata di n rate un periodo prima della scadenza della prima rata
$R = \frac{V}{a_{n-i}}$	Rata di una rendita posticipata di n rate quando se ne conosce il valore attuale un periodo prima della scadenza della prima rata
$M = Rs_{n-i}(1+i) = R\frac{(1+i)^n - 1}{i}(1+i)$	Montante di una rendita anticipata di n rate di importo R un periodo dopo il versamento dell'ultima rata
$V = Ra_{n-i}(1+i) = R\frac{1 - (1+i)^{-n}}{i}(1+i)$	Valore attuale di una rendita anticipata di n rate all'atto della scadenza della prima rata

• AMMORTAMENTI

AMMORTAMENTO ITALIANO (A QUOTE COSTANTI DI CAPITALE)

$C = \frac{A}{n}$	Calcolo delle quote costati di capitale per il debito A da estinguere in n anni
$I_k = iD_{k-1}$	Calcolo della quota di interessi da versare all'anno k in base al debito residuo D all'anno k-1
$R_k = C + I_k$	Calcolo della rata d'ammortamento

AMMORTAMENTO FRANCESE (A RATE COSTANTI)

$R = \frac{A}{a_{n-i}}$	Calcolo della rata d'ammortamento costante per estinguere il debito A in n anni
$I_k = iD_{k-1}$	Calcolo della quota di interessi da versare all'anno k in base al
	debito residuo D all'anno k-1
$C_k = R - I_k = C_1 (1+i)^{k-1}$	Calcolo delle quote capitale in progressione geometrica

[•] Nelle rendite sia anticipate che posticipate per il calcolo del numero delle rate è necessario applicare i logaritmi alla formula in cui si è ricavato il binomio (1+i) mentre per il calcolo del tasso di interesse è indispensabile l'uso delle tavole finanziarie