
DATA DEFINITION LANGUAGE (DDL)

DDL stands for Data Definition Language. It is a subset of SQL (Structured Query Language) that focuses on defining
and managing the structure of the database. In other words, DDL is used to create, modify, and delete database objects,
such as:

• Databases themselves: Create and delete databases.
• Tables: Create, modify (add/remove columns, change data types, etc.), and delete tables.
• Indexes: Create and delete indexes to improve query performance.
• Views: Create and delete views (query-based virtual tables).
• Users and Permissions: Manage users and their permissions to access the database (although this is sometimes
considered part of DCL - Data Control Language, there is overlap).
• Constraints: Define data integrity constraints (primary keys, foreign keys, uniqueness constraints, etc.).

• Sequences: Create and manage sequences to generate unique values.
• Synonyms: Create synonyms for database objects to simplify referencing.

The main DDL statements in SQL are:

• CREATE: Used to create new database objects. Examples: CREATE DATABASE, CREATE TABLE, CREATE
INDEX, CREATE VIEW.
• ALTER: Used to change the structure of existing objects. Examples: ALTER TABLE (to add, change, or delete

columns), ALTER DATABASE.
• DROP: Used to permanently delete database objects. Examples: DROP TABLE, DROP DATABASE, DROP
INDEX, DROP VIEW.
• TRUNCATE: Used to delete all data from a table, but keep the table structure intact. It is faster than DELETE for
deleting all data and does not log individual deletions in the transaction log (in some DBMSs).
• RENAME: Used to rename database objects. Example: RENAME TABLE.

Key Features of DDL:

1. Database Structure Definition: The key feature of DDL is its focus on defining the structure of the database. It does
not deal directly with the data contained in the tables (that is the role of DML), but rather with how the tables and
other objects are organized and defined.
2. Schema Operations: DDL operations modify the database schema, or its logical structure. Each DDL command
alters the way data is organized and managed by the DBMS.

3. Generally Irreversible (or Hard to Reverse) Operations: Commands
such as DROP are irreversible and result in the permanent loss of the objects (and the data contained in them, in the
case of tables). ALTER TABLE can also be difficult to reverse in some cases, especially if it involves removing
columns or constraints. Therefore, it is crucial to use DDL commands with caution and planning.
4. Automatically Committed (Auto-Commit) Operations: Most relational database management systems execute DDL
commands in an auto-commit mode. This means that changes made by a DDL command are immediately and
permanently committed to the database. There is no need for an explicit COMMIT command as is the case with DML
transactions (although some DBMSs allow you to embed DDL in larger transactions).

5. Often Requires Administrative Privileges: Executing DDL commands that modify the database structure (such as
CREATE DATABASE, DROP TABLE, ALTER TABLE) often requires administrative privileges or specific
permissions. This is to protect the integrity and stability of the database and prevent unauthorized changes to its
structure.
6. Standard Part of SQL Language: DDL is an integral and standardized part of the SQL language. DDL statements are
generally compatible between different relational database systems (with possible minor syntax variations specific to
the SQL dialect).

7. Used for Initial Setup and Database Evolution: DDL is essential for two key phases in the life of a database:
o Initial Setup: When creating a new database, DDL is used to define the initial structure, creating databases, tables,
indexes, constraints, etc.
o Database Evolution: Over time, application needs may change, requiring changes to the database structure. DDL is
used to adapt the schema, adding new tables, columns, indexes, or modifying existing ones.
8. Fundamental to Database Design: DDL is closely related
to database design. Good database design results in a well-structured and efficient DDL, which correctly reflects the

data model and supports the needs of the application.
In summary, DDL is an essential component of SQL for defining and managing the database architecture. It allows
you to create, modify and manage all the objects that make up the database structure, ensuring a solid and well-defined
basis for storing and managing data.

