
Sockets : what they are and how
they work

A socket is a software object that allows the sending and receiving of data,
between remote hosts (over a network) or between local processes (Inter-

Process Communication).
More precisely, the concept of socket is based on the Unix file Input/Output model,
therefore on the open , read , write and close operations ; in fact, it is used in the
same way, adding parameters useful for communication, such as addresses , port
numbers and protocols .
Communicating local and remote sockets form a pair , consisting of the client and
server address and port ; there is a logical connection between them.
Operating systems usually provide APIs to allow applications to control and use
network sockets .
We can see sockets as intermediaries between the application and transport
layers in the TCP/IP stack . In fact, the function of sockets is to address processes .

Format of a Socket Address

Since there can be many processes on the interlocutor systems, it is necessary to
have a way to precisely address the process with which one is communicating. For
this purpose,
ports are used : numbers that identify the processes in execution.
The interlocutors then store the address and port of the other party in a socket
address , formed as follows:

• IP address: 32 bit;

• Port number: 16 bit.
Port numbers have been defined by the IANA , and are divided into:

• Well-known (reserved for specific protocols): 20, 23, 25, 80, 110,… ;

• Do not use: 0;

• Reserved for well-known processes : 1-255;

• Reserved for other processes: 256-1023;

• Other applications: 1024-65535;
Normally the port numbers assigned to processes (not well-known) are at the
discretion of the operating system. The operating system is said to assign
ephemeral ports .

Socket families

The types of protocols used by socket define its family (or domain). We can
distinguish, for example, two important families:

• AF_INET : communication between remote hosts , via the Internet;

http://it.wikipedia.org/wiki/Comunicazione_tra_processi
http://it.wikipedia.org/wiki/Comunicazione_tra_processi
http://it.wikipedia.org/wiki/Comunicazione_tra_processi
http://it.wikipedia.org/wiki/Comunicazione_tra_processi
http://it.wikipedia.org/wiki/Comunicazione_tra_processi
https://informaticabrutta.it/stack-tcp-ip/
https://it.wikipedia.org/wiki/Internet_Assigned_Numbers_Authority

• AF_UNIX : local inter-process communication, on Unix machines. This family

is also called Unix Domain Socket .

Socket Types

Within the family we can distinguish the socket type , depending on the connection
mode. We have:

• Stream sockets : connection-oriented , based on reliable protocols such as

TCP or SCTP;

• Datagram socket : non-connection-oriented (connectionless), based on the

fast but unreliable UDP protocol;

• Raw socket (raw IP): the transport layer is bypassed, and the header is

accessible to the application layer.

Stream Socket

Being based on transport layer protocols such as TCP , they ensure reliable , full-
duplex , connection-oriented communication with a variable-length byte stream
.
Communication through this socket consists of these phases:

#1 – Creating Sockets

Client and server create their respective sockets , and the server listens on a port
.

Since the server can create multiple connections with different clients (but also
with the same one), it needs a queue to handle the various requests.

#2 – Connection request

The client makes a connection request to the server.
Note that we can have two different port numbers, because one could be dedicated
only to outgoing traffic, the other only to incoming traffic; this depends on the host
configuration . In essence, it is not a given that the local port of the client coincides
with the remote port of the server
The server receives the request and, if it is accepted, a new connection is created
.

#3 – Communication

Now the client and server communicate through a virtual channel , between the
socket of the former and a new one of the server, created specifically for the data
flow of this connection: data socket .
Consistent with what was mentioned in the first phase, the server creates the data
socket because the first one is used exclusively for request management. It is
possible, therefore, that there are many clients communicating with the server,
each towards the data socket created by the server for them.

#4 – Closing the connection

Since TCP is a connection-oriented protocol, when there is no longer a need to
communicate, the client communicates this to the server, which de-instantiates
the data socket . The connection is then closed.

Datagram Socket

They are based on UDP , a transport layer protocol that guarantees low latency
communications (ideal for video chats, for example), at the expense of data
reliability. In fact, there is no flow control (datagram ordering and error control).

Since UDP is not a connection-oriented protocol, there is no connection phase seen
above, but the client communicates directly with the server, whenever it wants.

#1 – Creating Sockets

As in the previous type, client and server create their respective sockets , and the
server listens on a port . The server socket , this time, does not need a queue, since
incoming and outgoing data does not need to be confined within a connection, so
communication with different clients takes place on the same interface .

#2 – Sending data

The client sends datagrams directly to the server. The same applies here as
previously stated about port numbers.

#3 – Server Response

The server sends the client a possible response . The communication is therefore
made up of a loop that lasts as long as there is data to send and, obviously, as
long as the hosts are reachable.

